organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Krešimir Molčanov,^a Biserka Kojić-Prodić,^a* Nikola Basarić^b and Kata Mlinarić-Majerski^b

^aDepartment of Physical Chemistry, Rudjer Bošković Institute, POB 180, HR-10002 Zagreb, Croatia, and ^bDepartment of Organic Chemistry and Biochemistry, Rudjer Bošković Institute, POB 180, HR-10002 Zagreb, Croatia

Correspondence e-mail: kojic@irb.hr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.043 wR factor = 0.123 Data-to-parameter ratio = 11.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

3-Acetamidoadamantane-1-carboxylic acid

The title compound, $C_{13}H_{19}NO_3$, crystallizes with two molecules, *A* and *B*, in the asymmetric unit. Intermolecular O-H···O hydrogen bonds link symmetry-related molecules into infinite chains parallel to the [101] direction, with short O···O distances of 2.534 (2) and 2.618 (2) Å in the chains of *A* and *B* molecules, respectively. Intermolecular N-H···O hydrogen bonds cross-link these two chains.

Comment

Acetamido derivatives of adamantane have been studied intensively, mainly due to their biological activity (Geigy, 1966). The title compound, (I) (Fig. 1), is a useful intermediate in the preparation of unnatural amino acids, such as 3-amino-1-adamantanecarboxylic acid. This acid has been incorporated into small peptides which showed antitumor activity *in vitro* (Horvat *et al.*, 2006). Here we report the crystal structure of (I).

The title compound crystallizes in the space group $P2_1/n$, with two independent molecules, A and B, in the asymmetric unit. Most geometric parameters of A and B coincide within three standard uncertainties (Fig. 2) and agree with the literature data for the same atom types and hybridizations (Allen *et al.*, 1987). The only significant differences ($\delta \ge 3 \sigma$) are those involving the torsion angles defining the orientations of the acetamide and carboxyl units (Table 1).

In the early stages of data reduction and structure solution, *E*-statistics revealed a hypercentric structure. Two molecules, *A* and *B*, which are related by a pseudo-inversion centre at *ca* (1/5, 1/4, 1/4) (Fig. 3) generate hypersymmetry. When transformed into a standard setting ($P2_1/c$), the spatial arrangement of the molecules in the unit cell (Fig. 3) and the location of the pseudo-inversion centre agree with those observed for $P2_1/c$ structures with Z' = 2 (Zorky, 1996; Pidcock, 2006).

The crystal packing is dominated by double hydrogenbonded chains running in the [101] direction (Fig. 3) generated by pseudo-inversion centres. There are four symmetry-independent hydrogen bonds (Table 2), grouped into two pairs related by a pseudo-inversion centre. Two $O-H\cdots O$ bonds Received 5 October 2006 Accepted 30 October 2006

The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability and H atoms are depicted as spheres of arbitrary radii. Intermolecular hydrogen bonds between molecules A and B, related by a pseudo-inversion centre, are shown as dashed lines.

Figure 2

Overlay of molecules A (blue) and B (red); small conformational differences involve acetamido and carboxyl groups (Table 1).

are relatively short for their type and can be classified as medium-strong to strong according to Jeffrey (1997). The hydrogen bonds between the hydroxyl and amide sp^2 O atoms $(O-H \cdots O)$ link symmetry-equivalent molecules $(A \cdots A;$ $B \cdots B$) while pairs of amide and carboxyl sp^2 O atoms (N- $H \cdots O$) cross-link $A \cdots B$ molecules. The hydrogen-bonded units create a hydrophilic core, whereas the adamantyl units are located at the outer parts of the hydrogen-bonded chains. Alternating hydrophilic and hydrophobic regions characterize the molecular assembly in the solid state (Fig. 3).

Experimental

The title compound, (I), was prepared by treating adamantane-1carboxylic acid with oleum in acetonitrile (Novikov et al., 1980). After

Figure 3

Crystal packing of (I) in the ac plane with hydrophilic interiors of hydrogen-bonded chains and hydrophobic adamantyl groups. Molecules A are blue, B are red, and hydrogen bonds are violet. [Symmetry codes: (ii) $x - \frac{1}{2}, \frac{3}{2} - y, z - \frac{1}{2}$; (iii) $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z$; (iv) x, y, 1 + z; (v) x, y, z.]

work-up, single crystals were obtained from the crude product by slow evaporation of a methanol solution.

Crystal data

C ₁₃ H ₁₉ NO ₃	Z = 8
$M_r = 237.29$	$D_x = 1.314 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Cu $K\alpha$ radiation
a = 13.3487 (6) Å	$\mu = 0.76 \text{ mm}^{-1}$
b = 10.5295 (5) Å	T = 293 (2) K
c = 17.2793 (7) Å	Prism, colourless
$\beta = 99.073 \ (3)^{\circ}$	$0.3 \times 0.15 \times 0.15$ mm
$V = 2398.31 (18) \text{ Å}^3$	

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (8 reflections; North et al., 1968) $T_{\min} = 0.845, T_{\max} = 0.892$ 5262 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.123$ S = 1.035043 reflections 460 parameters All H-atom parameters refined

5043 independent reflections 3856 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.014$ $\theta_{\rm max} = 76.5^{\circ}$ 3 standard reflections frequency: 120 min intensity decay: 2%

$w = 1/[\sigma^2(F^2) + (0.0561P)^2]$
$w = 1/[0 (1_0) + (0.03011)]$
+ 0.04031]
where $P = (P_0 + 2P_c)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.28 \text{ e A}^3$
$\Delta \rho_{\rm min} = -0.30 \text{ e A}^{-5}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00042 (10)

Table 1 Selected torsion angles (°).

C13A-C12A-N1A-C3A	-174.35 (16)	C13B-C12B-N1B-C3B	171.35 (16)
O3A-C12A-N1A-C3A	3.9 (3)	O3B-C12B-N1B-C3B	-6.2(3)
C2A-C1A-C11A-O1A	164.46 (15)	C2B-C1B-C11B-O1B	-168.34(15)
C2A-C1A-C11A-O2A	-17.9 (2)	C2B-C1B-C11B-O2B	12.7 (2)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} \hline O1A - H1A \cdots O3A^{i} \\ O1B - H1B \cdots O3B^{ii} \\ N1A - H1C \cdots O2B^{iii} \\ N1B - H1D \cdots O2A^{iv} \end{array} $	0.95 (3) 0.92 (4) 0.85 (2) 0.85 (2)	1.61 (3) 1.73 (3) 2.17 (2) 2.22 (2)	2.534 (2) 2.618 (2) 2.976 (2) 3.006 (2)	163 (3) 163 (3) 158 (2) 154 (2)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

H atoms were located in a difference Fourier map and refined freely.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank the Ministry of Science, Education and Sport of the Republic of Croatia (grant Nos. 0098036 and 0098052), for financial support of this study.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Geigy, J. R. (1966). Neth. Appl. 6 600 715, July 21.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Horvat, Š., Mlinarić-Majerski, K., Glavaš-Obrovac, Lj., Jakas, A., Veljković, J., Marczi, S., Kragol, G., Roščić, M., Matković, M. & Milostić-Srb, A. (2006). J. Med. Chem. 49, 3136–3142.
- Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Novikov, S. S., Hardin, A. P., Butenko, L. N., Kulev, I. A., Novakov, I. A., Radèenko, S. S. & Burdenko, S. S. (1980). *Zh. Org. Khim.* 16, 1433–1435.
- Pidcock, E. (2006). Acta Cryst. B62, 268-279.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zorky, P. M. (1996). J. Mol. Struct. 374, 9-28.